C.U.SHAH UNIVERSITY WinterExamination-2015

Subject Name:Mathematics-II

	Subject	Code: 4S	5C02MTC1	Branch: B.Sc. (All)			
	Semeste Instructi	er: II	Date: 21/11/2015	Time: 10:30 To 01:30 Ma	arks: 70		
	(1) (2) (3) (4)	Use of Pr Instructio Draw nea Assume s	ogrammable calculator ns written on main ans t diagrams and figures uitable data if needed.	r & any other electronic instrument is prohibited. swer book are strictly to be obeyed. s (if necessary) at right places.			
Q-1		Attemp	ot the following quest	ions:	(14)		
	a)	If $x + i$	$y = \sqrt{2} + 3i$, then x^2	+ y is			
		1) 7		2) 5			
		3) 13		4) $\sqrt{2}$ + 3			
	b)	Solve:	$y^{\prime\prime} - 3y^{\prime} + 2y = 0.$				
		1) c ₁ e	$e^{-x} + c_2 e^{2x}$	2) $c_1 e^x + c_2 e^{2x}$			
		3) c ₁ e	$e^x + c_2 e^{-2x}$	4) None of these			
	c)	nary part of $f(z)$ is					
	,	1)e ^y s	$\sin x$	2) $e^x \cos y$			
		3) e^{2x}	$\cos 2y$	4) $e^{2x} \sin 2y$			
	d)	Hyperb false.	Hyperbolic functions are periodic. Determine whether the statement is true or false.				
	e) $\sin ix = -i \sinh x$. Determine whether the statement is true or false.						
	f)	$\frac{e^{x}+e^{-x}}{2}$	=				
		1) cos	h x	 sinh x 			
		3) co:	5 <i>x</i>	4) None of these			
	g) The particular integral of $(D^2 - 4)y = \sin 3x$ is						
		$1)^{1}_{-}$		$(2) - \frac{1}{2}$			
		¹ / ₄		²) - 13			

Page 1 || 4

	3) $\frac{1}{5}$	4) None of these			
h)	$\int_0^{\frac{\pi}{2}} \sin^6 x$ is equal to				
	1) $\frac{16}{5}\pi$	2) $\frac{5}{16}\pi^2$			
	3) $\frac{5}{16} \pi$	4) $\frac{5}{16}$			
i)	$\frac{1}{D^2}x^2 = $				
j)	If the root of $f(D) = 0$ are $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$ then the complementary function of $f(D)y = X$ is				
	1) $c_1 e^{\alpha x} + c_2 e^{\beta x}$	2) $\alpha e^{m_1 x} + \beta e^{m_2 x}$			
	3) $e^{\alpha x}(c_1\cos\beta x + c_2\sin\beta x)$	4) None of these			
k)	S is a sequence if				
	1) $S: R \to N$ is a function	2) $S: N \to R$ is a function			
	3) $S: R \to R$ is a function	4) None of these			
l)	Number of arbitrary constants in the equation of a cone is :				
	1) 3	2) 4			
	3) 5	4) 7			
m)	The equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{2z}{c}$ represent :				
	1) an ellipsoid	2) a hyperboloid			

n) All the generator of a cylinder meet at a point. Determine whether the statement is true or false.

4) a hyperbolic paraboloid.

Attempt any four questions from Q-2 to Q-8

3) an elliptic hyperboloid

Q-2Attempt all questions(14)a)State and prove De Moivre's Theorem.(05)b)Prove that
$$\sin^{-1} z = \frac{1}{i} \log(iz \pm \sqrt{1-z^2}).$$
(05)

c) Expand $\sin^8 \theta$ in terms of cosine series of multiple angles of θ . (04)

Page 2 || 4

Attempt all questions

a) Solve: $x^5 + 1 = 0$.

Write formula of log (x + iy) and findlog $\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$. (05)

c) Prove that
$$\left(\frac{1+\cos\theta+i\sin\theta}{1+\cos\theta-i\sin\theta}\right)^n = \cos(n\theta) + i\sin(n\theta).$$
 (04)

Q-4 Attempt all questions (14)

a) Solve:
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 8y = e^{3x}$$
. (05)

b) Solve:
$$\frac{d^2 y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$$
 (05)

c) Solve:
$$y''' - 7y' - 6y = 0.$$
 (04)

Q-5 Attempt all questions (14) (15)

a) Solve:
$$x^3 \frac{d^3 y}{dx^3} - x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 2y = x^3 + 3x$$
. (05)

b) Prove that:

$$i) \sin(x + y) = \sin x \cdot \cos y + \cos x \cdot \sin y$$

$$ii) \cosh^2 x - \sinh^2 x = 1$$
(05)

c) Solve:
$$y'' + 4y = \sin 2x$$
 (04)

Q-6 Attempt all questions

a) Prove that $\int \cos^n x \, dx = \frac{\sin x \cdot \cos^{n-1} x}{n} + \frac{(n-1)}{n} \int \cos^{n-2} x \, dx.$ (05)

b) Evaluate: i)
$$\int_0^{\pi} \sin^5 \frac{x}{2} \, dx$$
, ii) $\int_0^{\pi} \sin^6 x \cos^4 x \, dx$. (05)

c) Every convergent sequence has a unique limits. (04)

Q-7

Attempt all questions (14)

a) Find the equation of cone whose vertex is (α, β, γ) and base curve (05) $y^2 = 4ax, z = 0$.

- b) Prove that the equation of a cone whose vertex is the origin is homogeneous and (05) conversely.
- c) Prove that the cones $ax^2 + by^2 + cz^2 = 0$ and $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0$ are reciprocal. (04)

Q-8 Attempt all questions

Page 3 || 4

Q-3

b)

(14) (05)

(14)

(14)

a)	Find the equation of right circular cylinder of which guiding curve is, a				
	$\operatorname{circle} x^2 + y^2 + z^2 = 4, x + y + z = 3.$				

- b) Write equation and draw rough sketch of at least five different conicoids. (05)
- c) Find the equation of a cylinder whose generating lines have the direction cosine (l, m, n) and which passes through the circle $x^2 + z^2 = a^2$, y = 0. (04)

